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Fractal Dimensions for Repellers of Maps with Holes
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In this work we study the Hausdorff dimension and limit capacity for repellers
of certain non-uniformly expanding maps f defined on a subset of a manifold.
This subset is covered by a finite number of compact domains with pairwise
disjoint interiors (the complement of the union of these domains is called hole)
each of which is mapped smoothly to the union of some of the domains with
a subset of the hole. The maps are not assumed to be hyperbolic nor confor-
mal. We provide conditions to ensure that the limit capacity of the repeller is
less than the dimension of the ambient manifold. We also prove continuity of
these fractal invariants when the volume of the hole tends to zero.

KEY WORDS: Hausdorff dimension; limit capacity; fractal dimensions; maps
with holes; non-uniformly expanding maps; volume comparison method.

1. INTRODUCTION

1.1. Background and Motivation

Fractal invariants such as the Hausdorff dimension have been an impor-
tant topic in many branches of Dynamical Systems. They have been used
in topological, geometric and ergodic approaches to Dynamics, provid-
ing information about the dynamical behavior of maps and describing the
geometrical structure of invariant sets. In the thermodynamical formalism
they constitute a beautiful bridge between geometrical aspects and physical
concepts such as entropy. There is now a rich theory of fractal dimensions
for invariant sets of uniformly hyperbolic systems, especially in the case of
surfaces. For instance,(9) provides a formula for the dimension of horse-
shoes from which one gets that the Hausdorff dimension and the limit
capacity depend continuously on the dynamics, and are strictly less than
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2, at least when the dynamics is C2. For more information see ref. 10,
chapter 4. In this work we extend some of the conclusions of this theory
beyond the uniformly hyperbolic setup.

In a d-dimensional manifold, consider M a set which is the closure
of its interior. Suppose that f is a map defined on finitely many, compact
domains Ri ⊂M with pairwise disjoint interiors, whose union is not the
whole M. The subset of M where f is not defined is called hole. Each
domain Ri is mapped onto a subset of M which is the union of some
of the domains with, possibly, some part of the hole. Moreover we sup-
pose that f is expanding in a non-uniform fashion to be made precise
later. The main object of interest is the set � of points that never fall
into the hole (the repeller) under iteration. Our first main result states that
limit capacity of � is less than the dimension of the ambient manifold. In
ref. 8, Horita and Viana proved for a setting very similar to ours, the anal-
ogous result on Hausdorff dimension. It is known that Hausdorff dimen-
sion is less or equal than limit capacity, so their result is included in ours.
Since our methods are very different, the present paper gives, in particu-
lar, a new proof to the main result in ref. 8. A second set of new results
presented in this work is the dependence of Hausdorff dimension and limit
capacity on the Lebesgue measure of the hole. We prove that the Haus-
dorff dimension and the limit capacity of the repeller converge to the dimen-
sion of the ambient manifold if the Lebesgue measure of the hole goes to
zero. Clearly the result on limit capacity follows from the one on Haus-
dorff dimension. Nevertheless we provide a different proof to the former,
whose main advantage resides on its simplicity. One interesting setting
where these results can be applied is the class of diffeomorphisms derived
from Anosov diffeomorphisms through a Hopf bifurcation. See refs. 1, 7.
Using(7) it follows from our results that the limit capacity and the Haus-
dorff dimension of repellers derived from Anosov diffeomorphisms through
Hopf bifurcations is less than the dimension of the ambient manifold.
Furthermore, both fractal dimensions converge to the dimension of the mani-
fold when the map converges to the bifurcating diffeomorphism. Our conclu-
sions may be seen as an extension of results of Diaz and Viana in ref. 6.
where they considered diffeomorphisms derived from Anosov on the two-
dimensional torus. A fundamental difference is that our repellers are nei-
ther uniformly hyperbolic nor conformal along invariant directions. Let us
comment a bit more on this. Most results on fractal dimensions of invari-
ant sets of dynamical system rely on auto-similarity, which on its turn, is
often derived from hyperbolicity and conformality. The first of these prop-
erties is used to ensure control of volumes proportions (through distor-
tion arguments) while conformality provides control of shapes of removed
sets (pre-images of the hole). Neither of these two properties holds in our
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setting. Our strategy is to approach fractal dimensions through volume
estimates. To begin with, we are able to obtain volume distortion con-
trol with our assumption about non-uniform hyperbolicity. Moreover, this
approach also allows us to bypass the lack of conformality: for the limit
capacity statement, besides the volume estimates we only need some con-
trol of limit capacity of pre-images of the boundary of the hole, which
is obtained following an argument from ref. 8. On the other hand, it is
a bit more delicate to avoid using conformality when dealing with Haus-
dorff dimension. To go around this problem we propose an approach we
call Volume Comparison Method. Our key ingredient is a control of the
spatial distribution of the removed sets, which we obtain using the struc-
ture of pre-images of the domains where the map is defined by the inverse
branches, more precisely, controlling the diameters of such pre-images.

Let us also mention that ergodic properties of Anosov maps with
holes have been studied by Chernov, Markarian and Troubetzkoy (see refs.
2–5). For an account on fractal dimensions and dynamical systems we
shall refer to the recent Pesin monograph.(11)

1.2. Definitions and Results

1.2.1. Map with Hole

Consider M a compact d-dimensional Riemannian manifold. Let
M ⊂ M be a set that is the closure of its interior and R1, . . . ,Rm be
domains in M whose interiors are pairwise disjoint (we use the term
domain to mean a compact path-connected set) and such that the limit
capacity of the boundary of Ri is less than d for all i. The inner diameter
of a subset of M is the supremum of the inner distances between any two
points in the same connected component, where the inner distance is the
infimum of all lengths of curves connecting the two points. A map with
hole is a map f :R1 ∪ · · · ∪Rm→M such that log |det(Df (−1))| is (C0, ε)-
Hölder continuous for some C0>0 and ε>0, for any inverse branch f (−1)

of f and the restriction of f to each Ri is a diffeomorphism onto some
domain Wi with the following properties:

• for all i∈{1, . . . ,m}, there exists some j ∈{1, . . . ,m} such thatRj ⊂Wi ;

• Rj ⊂Wi whenever Rj ∩Wi �=∅;

• for all i∈{1, . . . ,m}, Wi have finite inner diameter (let us call ρ the
maximum inner diameter of Wi over i ∈{1, . . . ,m});

• Markovian property: the union of the boundaries of Rj for j ∈
{1, . . . ,m} is an invariant set, that is, if x belongs to the boundary of any
Ri , its image also belongs to the boundary of some Rj .
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Notation 1. Defining D= min{Leb(Wi) : i= 1, . . . ,m} we say that f
is a (D,ρ,C0, ε)-map with hole according to the constants specified above.

Remark 1. The condition on log |det(Df (−1))| is satisfied if, for
instance, f is C1+ε .

The set Hf =M\(R1 ∪ · · · ∪Rm) is the hole of f and we call ρ the
inner diameter of f . The repeller of f is the set �f of points in M whose
forward orbits never enter Hf :

�f ={x ∈M :f n(x)∈R1 ∪· · ·∪Rm for every n�0}

If we define

�n={x ∈M :f j (x)∈R1 ∪· · ·∪Rm whenever 0� j <n}

it follows that �f =∩n∈N�n.

1.2.2. Expanding and Non-Uniformly Expanding Maps

Given c > 0, a local diffeomorphism F is called c-expanding if
there exist n such that the derivative of any inverse branch satisfies
||DF(−n)(x)||< e−nc for all x in its domain of definition. For our pur-
poses, that is, the study of the repeller, it makes no difference whether we
deal with the original map or with a fixed iterate (that is, to work with
Fn instead of F ). Therefore, to simplify our presentation, we shall assume
n = 1. In our paper, the notation F is used here to maps known to be
expanding, while f is usually applied to what we call a non-uniformly
expanding map, according to the definition bellow. Given a local diffeo-
morphism f we denote by f (−1) any inverse branch of f . Given n�1 and
α1, . . . , αn in {1, . . . ,m}, a set

C(α1, . . . , αn)=Rα1 ∩f−1(Rα2)∩· · ·∩f−(n−1)(Rαn)

is called and n-cylinder for f .
For a map with hole f , we define the function

φn(α1, . . . , αn)= 1
n

n∑

j=1

inf
x∈Cj

log ||Df−1(f j (x))||−1

where Cj =C(α1, . . . , αj ). We say that φn is the average least expansion.
Obviously, if f is immediately c-expanding, that is, if ||Df−1(x)|| � e−c
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for all x, then φj (α1, . . . , αj )� c for all j . Let us call S0(c) the set of
points that belong to some cylinder C(α1) such that φ1(α1)>c and Bn(c)
the set of points that belong to some cylinder C(α1, . . . , αn) such that
φj (α1, . . . , αj )� c for all j ∈ {1, . . . , n}. We notice that the set Bn(c) is a
union of cylinders. From now on we will say that n is a c-expanding time
for a cylinder Cj =C(α1, . . . , αj ) meaning that φj (α1, . . . , αj )� c.

The definition of a non-uniformly c-expanding map requires that the
measure of cylinders that take a long time to have an expanding time
decays in a particular fashion. Let {δn(c)}n∈N be a sequence of real pos-
itive numbers converging to zero. We say that a map f has c-decay δn(c)
if Leb(Bn(c))� δn(c) for all n� 1. Since c will be fixed through most of
this work, we refer to c-decay just as decay. Given c�0, we say that f is
non-uniformly c-expanding if it satisfies

(NU1) There exists a sequence δn(c) going to zero such that
Leb(Bn(c))� δn(c).

We say that a non-uniformly c-expanding map f has exponential decay if

(NU2) There exists c1 > 0 such that, for every large n, we have
Leb(Bn(c))� e−c1n.

Any c-expanding map satisfies assumptions (NU1) and (NU2).
We say that a family F of non-uniformly c-expanding maps has com-

mon decay if

(NU3) There exists a sequence δn(c) going to zero such that for every f ∈
F we have Leb(Bn(c))� δn(c).

1.2.3. Fractal Dimensions

For α�0, the Hausdorff α-measure of a metric space X is defined by

mα(X)= lim
ε→0

inf
{ ∑

U∈U
(diamU)α :U is an open covering of X with

diamU � ε for all U ∈U
}
.

It is easy to show that there exists a unique number HD(X), called
Hausdorff dimension of X, such that mα(X)=∞ for any α<HD(X) and
mα(X)= 0 for any α>HD(X). The limit capacity or box dimension, of a
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metric space X is defined by

Cap(X)= lim sup
ε→0

logn(X, ε)
| log ε| ,

where n(X, ε) is the smallest number of ε-balls needed to cover X.

1.2.4. Results

Our first main theorem provides an upper bound for the limit capac-
ity of �f , which is strictly smaller than the Hausdorff dimension of M,
when f is a map with hole satisfying (NU2).

Theorem 1. Consider f a non-uniformly c-expanding map with
hole with exponential decay. Moreover suppose that the difference Hi =
Wi\(R1 ∪ · · · ∪Rm) has non-empty interior for all i. Then Cap(�f )<d if
and only if Cap(∂ ∪i Hi)<d.

Remark 2. For the theorem above the Markovian property is neces-
sary for the only if part but not for the direct implication, that is, as we
can notice along the proofs, if f doesn’t have the Markovian property but
except by this lack it fits on the hypothesis of the theorem, we still verify
that Cap(∂ ∪i Hi)<d implies Cap(�f )<d. It is easy to see how the Mar-
kovian property is used in the only if part: it implies that ∂Hi ⊂ ∪∂Ri ⊂
�f . Therefore, with this property, if Cap(∂Hi)=d then Cap(�f )�d.

A second set of new results provides lower bounds for the limit capac-
ity and Hausdorff dimension of �f depending on the volume of the hole.
We use them to prove the continuity of such invariants when the Lebesgue
measure of the hole tends to zero. That is, if Lebesgue measure of the hole
tends to zero, the fractal dimensions tend to the dimension of the mani-
fold.

More precisely, we prove that, having fixed a few technical constants
(namely, the expansion constant c, the type δn(c) of decay the constants
of Hölder continuity (C0, ε), an upper bound to ||Df (−1)||, the number
m of inverse branches and an upper bound for the inner diameter and
a lower bound to Lebesgue measure of the domains Wi) then there are
lower bounds for the Hausdorff dimension and limit capacity of its repel-
ler depending only on Lebesgue measure of Hf . Moreover, these bounds
imply that when Leb(Hf ) tends to zero, the Hausdorff dimension and the
limit capacity estimates converge to d. Although the last convergence fol-
lows directly from the former (recall the well-known inequality HD(X)�
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Cap(X)) we provide an alternative and much simpler proof to the result
on limit capacity.

These statements are contained in Theorems 2, 3, and 4. Theorems 2
and 3 provide respectively a lower bound to limit capacity and Hausdorff
dimension of the repeller as functions of Lebesgue measure of the hole in
the case of expanding maps with hole. Theorem 4 allows us to apply those
theorems also to the case of non-uniformly expanding maps by the con-
struction of an immediately expanding map with repeller contained in the
non-uniform one, and such that the measure of the hole is a function of
the measure of the hole of the original map, converging to zero when the
latter converges to zero.

Theorem 2. Suppose that M is d-dimensional. Given c > 0, ε > 0,
ρ >0, D>0 and a constant C′

0, there exists a map

ψ0 : [0,1]→ [0, d]

such that ψ0(x) converges to d when x converges to zero and for any
c-expanding (D,ρ,C′

0, ε)-map with hole F we have that

Cap(�F )�ψ0(Leb(HF )).

Theorem 3. Suppose that M is d-dimensional. Given c > 0, ε > 0,
ρ >0, D>0 and a constant C′

0, there exists a map

ψ1 : [0,1]→ [0, d]

such that ψ1(x) converges to d when x converges to zero and for any
c-expanding (D,ρ,C′

0, ε)-map with hole F we have that

HD(�F )�ψ1(Leb(HF ))

Theorem 4. Given (C0, ε), c > 0, S > 0, ρ > 0, D> 0, m∈ N, and a
sequence δn(c), there exists a constant C′

0 and a function ψ2 : [0,1]→ [0,1]
satisfying

lim
x→0

ψ2(x)=0

such that if f is a non-uniformly c-expanding (D,ρ,C0, ε)-map with hole
with the following properties:
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(a) f has not more than m inverse branches (not more than m

domains Rj );

(b) sup ||Df (−1)||�S;

then there exists a c-expanding (D,ρ,C′
0, ε)-map with hole F in M

whose repeller is contained in the repeller of f and such that Leb(HF )<
ψ2(Leb(Hf )).

Fixing the constants (C0, ε), c>0, S>0, ρ>0, m∈N and D, consider
a family of non-uniformly c-expanding (D,ρ,C0, ε)-maps with hole {fα}α,
such that all map in the family satisfies (a) and (b) with the fixed con-
stants. Moreover suppose that the family have common decay. For each α,
let Hα be the hole of fα and �α be its repeller. In this setting Theorems
2, 3 and 4 imply the following result:

Corollary 5. HD(�α) and Cap(�α) converge to d when Leb(Hα)
tends to zero.

Considering that M is a compact set in a Riemannian manifold it is cov-
ered by a finite number of charts. For simplicity we assume that M is con-
tained in an d-dimensional unitary cube K (a d-cube), what is equivalent
to consider M covered by only one chart. The general case is analogous.

2. AUXILIARY NOTIONS AND RESULTS

2.1. Squared Partitions

Along all the next sections we use the following simple notation:

Definition 1. Given natural numbers k and n, the k-square partition
of order n is the partition of the d-cube in kdn disjoint cubes with volume
1/kdn. Each one of this cubes is called an n-element. We say that n is the
level of the element.

2.2. Induced Map and Bounded Volume Distortion Tools

The first step is to control the volume withdrawn at each step of
the construction of the repeller. This is done through a bounded distor-
tion argument using an expanding map induced from f . Consider Sn(c)=
Bn(c)\(Bn+1(c)∪f (−n)(Hf )) for all n�1 (we recall that S0(c) was defined
at introduction). We notice that the sets Sn(c) are disjoint and for n� 0
the set Sn(c) is a union of (n+1)-cylinders, thus f n+1 is defined for Sn(c).
Consider the map F :∪n�0Sn(c)→M defined by

F(x)=f n+1(x) if x ∈Sn(c).
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It is easy to check that this is a c-expanding map. We state some distortion
results for it. Except for minor points, next results are found in ref. 8.

Lemma 6. Given C0 > 0, c > 0 and ε > 0 there exists C′
0 > 0 such

that if log |det(Df (−1))| is (C0, ε)-Hölder for any inverse branch f (−1) of
f then log |det(DF (−1))| is (C′

0, ε)-Hölder for any inverse branch F (−1) of
F .

Proof. See the proof of Lemma 2.4 in ref. 8.

Proposition 7 (bounded distortion). Let C1 = exp(C′
0

∑∞
j=0 e

−cjε/2).
Then

1
C1

� |detDF(−n)(y)|
|detDF(−n)(z)| �C1

for every inverse branch F (−n) of Fn, any n� 1, and for every pair of
points y, z in the domain of F (−n).

Proof. See the proof of Proposition 2.5 in ref. 8.

Corollary 8. Let C2 =C2
1 . Then, given n�1 and any inverse branch

F (−n) of Fn, we have

1
C2

Leb(A)
Leb(B)

� Leb(F (−n)(A))
Leb(F (−n)(B))

�C2
Leb(A)
Leb(B)

for any measurable subsets A and B of the domain of F (−n).

Proof. See the proof of Corollary 2.6 in ref. 8.

In our settings it will be useful the following particularization of the
corollary above:

Corollary 9. Given n�1, any inverse branch F (−n) of Fn and mea-
surable subsets A and B of the domain of F (−n) such that B⊂A we have

Leb(F (−n)(A)\F (−n)(B))�Leb(F (−n)(A))
(

1−C2
Leb(B)
Leb(A)

)
.

Proof. Since B⊂A we have that

Leb(F (−n)(A)\F (−n)(B))=Leb(F (−n)(A))−Leb(F (−n)(B)).
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Moreover Corollary 8 implies that

Leb(F (−n)(B))�C2
Leb(B)
Leb(A)

Leb(F (−n)(A))

completing the proof.

An important fact to be noticed here is that the constants C1 and C2
depend only on the expansivity constant c and on the Hölder continuity
constants C0 and ε, they do not depend on f (or F ) itself.

3. UPPER BOUND FOR THE LIMIT CAPACITY

Our goal in this section is to prove Theorem 1.

3.1. Idea of the Proof

To explain the idea behind the argument, we first observe some facts
about a very simple fractal set. Let Q0 be a square with unitary side. Split
Q0 in four equal squares and remove the subset on the top and left. Let
Q1 be the set composed by the three remaining squares. Repeat this pro-
cess with each one of the three squares to obtain Q2. Let Q be the fractal
set obtained as the intersection of the sets remaining at each step if this
operation is repeated infinitely many times.

Clearly, for any n natural, we are able to cover Qn using 3n squares
with sides measuring (1/2)n, rewriting, we would do it with (1/2)−n log2 3

such squares.
Let us see that this intuitive property is sufficient to prove that limit

capacity of Q is less or equal to log2 3. Stating more precisely,

Lemma 10. Let Q be a set. If there exists ε < 1 such that for any
n> 0 there exists a covering of Q composed by ε−nd balls with ratio εn

then the limit capacity of Q is less or equal to d.

Proof. According to the definition of limit capacity, we have to
prove that

Cap(Q)= lim sup
δ→0

logn(Q, δ)
| log δ| �d,

where n(Q, δ) is the smallest number of δ-balls needed to cover Q.
For δ small enough (smaller than the fixed ε), there exists m such that

δ=εm+θ where θ ∈ (0,1]. Therefore, if there is a covering of Q by ε−(m+1)d
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balls of ratio εm+1, certainly there exists a covering of Q by ε−(m+1)d balls
of ratio δ (since δ� εm+1). It follows that

logn(Q, δ)
| log δ| � log ε−(m+1)d

| log εm+θ | = (m+1)d
m+ θ .

When δ converges to zero, m grows without bounds and last fraction
converges to d, proving the result stated.

Essentially, in the example of the classical fractal set mentioned above,
what allows us to easily state the existence of the desired covering is the
fact that the sets Qn, themselves, can be covered in such fashion. The
point is that they are very simple non-fractal sets and we are able to deal
easily with them. But once we have covered Qn, we have the covering of
Q since Q⊂Qn.

The argument that we develop now is very similar to this one. We
prove that there are coverings to �n with the properties stated in the
lemma above, and using this lemma we conclude that �f has limit capac-
ity less or equal to a d ′<d.

In order to verify if it is possible to cover �n as we want, the first
attempt is to consider the volume problem dividing Leb(�n) by ε−d ′n.
Here we face the first difficulty related to the lack of hyperbolicity: it is
hard to estimate Leb(�n) since we don’t have control of distortion. If we
had uniform expansion we could use a bounded distortion argument and
find η<1 such that Leb(�n)<ηn, what would be very nice since it would
give an affirmative answer to our first test: the volume of �n would be
lower than the volume of ε−d ′n balls with radius εn (if d ′ satisfies d −
d ′ � log η/ log ε). Let us suppose for a while that we have Leb(�n) < ηn.
This estimate does not assure the existence of an εn-covering of �n with
no more than ε−d ′n balls, but it ensures that we have such a covering of
�n\�ε∂n , where �ε∂n is an εn-neighborhood of the boundary of �n.

Therefore the work to find the upper bound to the limit capacity
will be split in two parts: first, to prove that even in our non-uniformly
hyperbolic situation we have the estimate Leb(�n)<ηn, and then to show
that we can cover �ε∂n with a small number of εn-balls. The second part
consists in an adaptation of arguments of Proposition 4.1 in ref. 8. The
former is done through the observation that the volume removed at each
step from the cylinders where we assure the control of distortion is large
enough to compensate the uncertainty about the volume removed where
we don’t have such a control.
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3.2. Proof of Theorem 1

Lemma 11 provides a way to establish un upper bound for the limit
capacity of a fractal set obtained as limit of a sequence of nested sets
requiring conditions only on the nested sets (not on the fractal set itself).
Lemmas 12 and 13 assure that the nested sets that generate the repeller of
a map with hole considered on Theorem 1 satisfy these conditions.

Definition 2. Given a sequence of nested sets (�n)n∈N, we say that
it has d-non-significant boundary if given ε small enough exists d ′<d such
that for all j ∈N we can find a covering of the εj -neighborhood of �j by
ε−d ′j balls of radius ε−j .

Lemma 11. If (�n)n∈N is a sequence of nested sets with d-non-sig-
nificant boundary such that Leb(�j )�ηj for some η∈ (0,1) then the limit
set �=∩n�n has limit capacity less than d.

Proof of Lemma 11. For all natural number k the amount of ele-
ments of the k-square partition of order n that are contained inside �n is
less or equal than ηnknd , that is,

k
n
(
d+ log η

log k

)

.

These elements cover �n\�∂n , where �∂n is the intersection of a 1/kn-neigh-
borhood of the boundary of �n with �n. The d-non-significant bound-
ary hypothesis ensures that there is some d ′<d such that if 1/k is small
enough we can cover �∂n with kd

′n balls of radius 1/kn. It follows that for

each n there is a 1/kn-covering of � with not more than k
n
(
d+ log η

log k

)

+kd ′n,
so Cap(�)�max{d ′, d+ log η

log k }<d.

Now we turn to our setting of maps with hole and state

Lemma 12. If Cap(∂Hf ) < d, then the nested sequence �n has
d-non-significant boundary.

Lemma 13. There exist η ∈ (0,1) such that Leb(�j ) � ηj for all
j ∈N.

Proof of Theorem 1. Since, by Markovian property, ∂Hi ⊂�f , it is
obvious that Cap(∂Hi)�d implies Cap(�f )�d. Lemma 11 ensures that if
the sequence �n has d-non-significant boundary and there is η∈(0,1) such
that Leb(�j )� ηj for all j ∈ N, then it follows that Cap(�f )< d. These
conditions are verified in Lemma 12 and Lemma 13.
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3.3. Proof of Lemma 12

Proposition 14. Let R be a domain in a d-dimensional manifold M
such that the limit capacity of the boundary of R is d0<d. Consider any
d1 ∈ (d0, d) and g :M→M a local diffeomorphism. Given ε small enough
there exists C such that for any n∈N there is a covering of the εn-neigh-
borhood of gn(∂R) by εn-balls with no more than CKn(2d−d1)ε−nd1 ele-
ments (K>1 is an upper bound to ||Dg|| and ||Dg−1||).

This proposition is an adaptation of Proposition 4.1 from Horita–
Viana(8) and is proved along the same lines:

Proof. Given ε >0 small enough there is a covering of ∂R by balls
with radius Knεn, with no more than C1(Kε)

−d1n balls B(xi,Knεn) (let
us fix the points xi). The images of these balls by gn are contained inside
balls B(gn(xi),K2nεn). Let us consider a covering of these images by the
balls B(gn(xi),2K2nεn). We will verify that these balls cover an εn-neigh-
borhood V of gn(∂R). Given y∈V , there exists x∈∂R such that d(y, x)<
εn, and then d(g−n(x), g−n(y)) < Knεn. It follows that there is xi ∈ ∂R
such that d(g−n(y), xi) < 2Knεn, and this implies d(y, gn(xi)) < 2K2nεn.
Since M is a manifold with bounded curvature there exists C2 such that
each ball B(gn(xi),2K2nεn) may be covered by C2K

2nd balls with radius
εn, that is, we have the covering we were looking for with no more than
CKn(2d−d1)ε−nd1 elements.

Proof of Lemma 12. Fix d2 ∈ (d1, d). The boundary of �n is com-
posed by the union of boundaries of Hi and their pre-images (by n− 1
iterations). By hypothesis, for each Hi we have no more than

∑n−1
i=0 m

i pre-
images (H itself is here considered as pre-image of order 0). This number
is upper bounded by pn for some p fixed. Therefore, according to the last
proposition, we have a covering of the εn-neighborhood of the boundary
of �n by no more than CpnKn(2d−d1)ε−nd1 balls.

CpnKn(2d−d1)ε−nd1 =C(pK2d−d1ε−d1)n�Cε−d2n

if

− log ε� 1
d2 −d1

(2(d−d1) logK+ logp)

This proves the lemma.



492 Dysman

3.4. Proof of Lemma 13: Reorganizing Trajectories

Fix c in hypothesis (NU1). The first idea we develop for controlling
the volume removed at each step of the construction of �f is the observa-
tion that what we really have to control is the trajectory of points consid-
ering a partition of M in sets Sn(c) instead of the partition into domains
{R1, . . . ,Rm}. In this direction we shall now group cylinders that have the
same behavior with respect to Sn(c). Define

Gn(β
n)=Bn(c)

and

Gn(β
n−1α)=Sn(c)

for n� 1 (observe that last definition implies G1(α) = S0(c)). We use βn

to denote that the point fell inside a set where the first expanding time is
bigger than n, while α assures the existence of an expanding time. We use
the identity βnβ=βn+1 in our notation.

Once defined Gn(β
n) and Gn(β

n−1α), given any

γ n ∈�n={γ1γ2 . . . γn where γi ∈{α,β} for all i},

we define Gn(γ
n) by induction. Suppose we have Gn(γ

n) for γ n =
γ1γ2 . . . γn−1α. It is enough to define Gn+k(γ nβk), Gn+1(γ

nα) and Gn+k+1
(γ nβkα):

Gn+k(γ nβk)={x ∈Gn(γ n) such that f n(x)∈Gk(βk)}

Gn+k+1(γ
nβkα)={x ∈Gn(γ n) such that f n(x)∈Gk+1(β

kα)}

Gn+1(γ
nα)={x ∈Gn(γ n) such that f n(x)∈G1(α)}.

Notice that each Gn(γ
n) is a union of n-cylinders and we have

�n=∪γ n∈�nGn(γ n)

Recall the map F defined in Section 2.2. It is easy to see that

F(x)=f n(x) for all x ∈Gn(βn−1α) for n�1.
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Lemma 15. Consider γ n = αa1βb1αa2 . . . βbkαak+1 , where
∑k+1
i=1 ai +∑k

i=1 bi = n and ai and bi are integers bigger than zero except, possibly,
a1, that might be zero. Then we have

f n|Gn(γ n)=FN |Gn(γ n), where N =k+
k+1∑

i=1

ai.

Proof. It is easy to verify that

f (Gn(αγ
n−1))⊂Gn−1(γ

n−1) and f k+1(Gn+k+1(β
kαγ n))⊂Gn(γ n). (1)

Moreover Gn(αaγ n−a)⊂Ga(αa) where f a =Fa , so

f a|Gn(αaγ n−a)=Fa|Gn(αaγ n−a).

Considering (1) now it is enough to see that

f b+1|Gn(βbαγ n−b−1)=F |Gn(βbαγ n−b−1),

what follows from the definition of F since Gn(βbαγ n−b−1)⊂Gb+1(β
bα).

Let us call Sn(γ n−1β) the set Gn(γ n−1β)\Gn+1(γ
n−1β2). We see that

Sn(γ
n−1β) is the union of Gn+1(γ

n−1βα) with a pre-image of the hole by
f−(n+1).

Last lemma states that the map f n restricted to Gn(γ n−1α) coincides
with some iteration of the map F , what allows us to use the bounded dis-
tortion argument for f n restricted to Gn(γ

n−1α). Therefore it is conve-
nient to use the following partition of �n:

�n = ∪γ n−1∈�n−1
[Gn(γ n−1α)∪ (∪∞

j=1Sn+j−1(γ
n−1βj ))] (2)

∪(∩∞
j=1Gn+j (γ

n−1βj )).

To find Leb(�n) we just have to add together the measure of the
sets on the right hand side of last equation. Due to the lack of hyperb-
olicity while iterating inside sets Si it is not straightforward to show that
Leb(�n) < ηn. Nevertheless, it turns out to be easy to prove a stronger
fact: if, while computing the sum of the measures of those sets, we replace
the terms Leb(Si) by a special enlargement of them, the sequence Ln,
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obtained instead of (and greater than) Leb(�n), has exponential decay. We
now proposes a general formula for such a sequence Ln, depending on a
constant ε related to the “enlargement” of Si .

Consider the sequence

Ln=
∑

γ n−1∈�n−1



Leb(Gn(γ n−1α))+



∞∑

j=1

Leb(Sn+j−1(γ
n−1βj ))

(1− ε)j









where a small enough ε ∈ (0,1) is fixed (the assumption of exponential
decay assures that the sum converges provided that ε is small enough).

From the Eq. (2) it is clear that

Leb(�n)�Ln

(recall that the non-uniformly expanding assumptions implies that
Leb(∩∞

j=1Gn+j (γ
n−1βj ))=0).

Therefore if we show that Ln decay exponentially, we will have a
bound Leb(�n)�ηn for some η∈ (0,1) and all natural n large enough

Next lemma shows that if ε in Ln formula is small enough then
Ln+1 �Ln(1− ε) (implying that Ln has exponential decay).

Lemma 16. Let H =Hi for i such that Leb(Hi)� Leb(Hj ) for any
j =1, . . . ,m. If ε ∈ (0,1) satisfies

Leb(H)�C2ε+C2
2

∞∑

j=1

[
Leb(Sj (βj ))

(1− ε)j+1
−Leb(Sj (βj ))

]
(3)

where C2 is the distortion constant from Corollary (8) in Section 2.2, then

Ln(1− ε)�Ln+1.

Lemma 17. There is ε ∈ (0,1) satisfying (3).

Proof of Lemma 17. Since C2ε can be made arbitrarily small, it is
sufficient to prove that the same happens to

∞∑

j=1

[
Leb(Sj (βj ))

(1− ε)j+1
−Leb(Sj (βj ))

]
. (4)
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Let us fix δ>0 and show that if ε is small enough then (4) is lower than
δ. By hypothesis (NU2)Leb(Sj (βj )) decays exponentially. Therefore there
is ε0 such that if 0<ε<ε0 then

Leb(Sj (βj ))

(1− ε)j+1

also decays exponentially and then there is N such that

∞∑

j=N

Leb(Sj (βj ))

(1− ε)j+1
<
δ

4
.

Clearly for this N we also have
∑∞
j=N Leb(Sj (βj ))<δ/4. Now just take ε1

such that if 0<ε<ε1 then

N−1∑

j=1

[
Leb(Sj (βj ))

(1− ε)j+1
−Leb(Sj (βj ))

]
<
δ

2
.

Any ε <min{ε0, ε1} will turn (4) less then δ.

Proof of Lemma 16.

Ln =
∑

γ n−1∈�n−1



Leb(Gn(γ n−1α))+
∞∑

j=1

Leb(Sn+j−1(γ
n−1βj ))

(1− ε)j





Ln+1 =
∑

γ n∈�n



Leb(Gn+1(γ
nα))+

∞∑

j=1

Leb(Sn+j (γ nβj ))
(1− ε)j





=
∑

γ n−1∈�n−1




Leb(Gn+1(γ
n−1α2))+Leb(Gn+1(γ

n−1βα))

+
∞∑

j=1

[
Leb(Sn+j (γ n−1αβj ))

(1− ε)j + Leb(Sn+j (γ n−1βj+1))

(1− ε)j
]


 .

It is enough to show that

Leb(Gn(γ n−1α))(1− ε)�Leb(Gn+1(γ
n−1α2))+

∞∑

j=1

Leb(Sn+j (γ n−1αβj ))

(1− ε)j
(5)
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and

∞∑

j=1

Leb(Sn+j−1(γ
n−1βj ))

(1− ε)j (1− ε) � Leb(Gn+1(γ
n−1βα))

+
∞∑

j=1

Leb(Sn+j (γ n−1βj+1))

(1− ε)j (6)

Considering that

Gn(γ
n−1α)=Gn+1(γ

n−1α2) ∪ [f−n(H)∩Gn(γ n−1α)]

∪ [∪∞
j=1Sn+j (γ

n−1αβj )]∪ [∩∞
j=1Gn+j (γ

n−1βj )],

(where Leb(∩∞
j=1Gn+j (γ

n−1βj ) = 0), to prove (5) we only have to
show that

Leb(f (−n)(H)∩Gn(γ n−1α)) � εLeb(Gn(γ n−1α))+
∞∑

j=1

Leb(Sn+j (γ n−1αβj ))

(1− ε)j+1

−
∞∑

j=1

Leb(Sn+j (γ n−1αβj )).

Using Lemma (15), assumption (3) and results from Section (2.2) we
have that

Leb(f (−n)(H)∩Gn(γ n−1α))� 1
C2

Leb(H)Leb(Gn(γ n−1α))

� 1
C2



εC2 +C2
2

∞∑

j=1

Sj (β
j )(

1
(1− ε)j −1)



Leb(Gn(γ n−1α))

� εLeb(Gn(γ n−1α))+
∞∑

j=1

Leb(Sn+j (γ n−1αβj ))

(1− ε)j

−
∞∑

j=1

Leb(Sn+j (γ n−1αβj )).
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and the proof of (5) is concluded. Now we prove (6).

∞∑

j=1

Leb(Sn+j−1(γ
n−1βj ))

(1− ε)j (1− ε) = Leb(Sn(γ n−1β))

+
∞∑

j=1

Leb(Sn+j (γ n−1βj+1))

(1− ε)j . (7)

Since

Gn+1(γ
n−1βα)⊂Sn(γ n−1β)

the proof is complete.

Proof of Lemma 13. There exists an ε such that Ln+1 �Ln(1− ε);
then the sequence Ln decays exponentially. From Eq. (2) it is clear that
Leb(�n)�Ln. Then Leb(�n)�ηn for some η∈ (0,1) and all natural n.

4. CONTINUITY OF THE HAUSDORFF DIMENSION: THE VOLUME

COMPARISON METHOD

This section is dedicated to proving Theorem 3. Later, in Section 6,
we will show how to extend this statement to the more general case of
non-uniformly expanding maps with hole.

4.1. Ideas and Motivations on the Volume Comparison Method

While for fixing an upper estimate to limit capacity and Hausdorff
dimension we just have to find a sequence of “efficient” coverings of the
set, to establish a lower estimate it is necessary to show that there is no
such sequence. More precisely, to prove that HD(X)�α we should find a
constant κ so that any sequence Un of coverings to X such that

sup
Uj∈Un

diamUj →0 when n→∞

satisfies

∑

Uj∈Un
(diamUj)α >κ for all n big enough. (8)
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We name the method developed in this part of this article volume
comparison method. The first step in our proof consists of showing that,
instead of considering all the sequences of coverings, we can just look at
a smaller class of coverings which we call square coverings, a sort of dis-
cretization of the set of coverings. Although this simplification allows us
to consider only countable coverings, we still need to verify that each one
of them satisfies property (8).

Next step in our method is to build a fractal set � whose Hausdorff
dimension we know. We call this set � a regular fractal set. Then we show
that given any square covering of our repeller, we can find a covering of
this fractal set just changing the position of the elements of that cover-
ing. This implies that our repeller has Hausdorff dimension greater than
the Hausdorff dimension of the regular fractal set.

4.2. Discretization of the Set of Coverings

We will use here definition 1 of square partitions.

Definition 3. If S is a set contained in a cube we call k-square cov-
ering of S any finite covering contained in the union of all k-square par-
titions of any order. That is each element of the covering is an n-element
of k-square partition for some n.

We observe that two elements of a k-square covering either have disjoint
interiors or one is contained in the other. In our arguments k will always
be a fixed constant, so sometimes we will refer to square coverings omit-
ting the k.

Lemma 18. In the definition of Hausdorff dimension for a compact
set contained in a cube it is enough to consider only k-square coverings
(for any k fixed).

Proof. Consider a compact set � with Hausdorff dimension h.
Given α<h it is obvious that for any sequence Vn of k-square coverings
to � whose diameters converge to zero when n tends to infinity we have
that

∑

Vi∈Vn
diam(Vi)α (9)

goes to infinity with n. We claim that if β>h then there exists a sequence
Vn of k-square coverings to � whose diameters converge to zero as n tends
to infinity and such that

∑
Vi∈Vn diam(Vi)β goes to zero. Let us construct
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such a covering. Consider Un a sequence of coverings to � such that

∑

Ui∈Un
diam(Ui)β →0

as n tends to infinity (such a sequence exists by the definition of Haus-
dorff dimension). By compacity of � we can assume that Un is finite for
each n. Notice that if

1/k(j+1) <diam(U)<1/kj ,

U can be covered by 2d elements of the k-square partition of order j .
Then we replace U by those 2d cubes. The result is a new sequence of par-
titions Vn such that

∑

Vi∈Vn
diam(Vi)β �2dkβ

∑

Ui∈Un
diam(Ui)β

The sequence Vn satisfies our claim.

4.3. Regular Fractal Sets

Next step is to define the k-regular fractal set �, the intersection of
sets �n that we construct now. Again we consider k fixed and we use the
term n-element meaning an element of the k-square partition of order n
(recall Definition 1).

Definition 4. A k-regular fractal set is a set � that can be obtained
as intersections of sets �n that are, by their turn, built according to the
following inductive procedure:

• Remove an 1-element from the unitary d-dimensional cube. The
remaining set is �1;

• For each �l built, define a block of �l as an intersection of �l
and an l-element;

• To obtain �l+1 remove from each block of �l one (l+1)-element.

This procedure results in a sequence of nested sets �n. Each �n is
the union of (kd − 1)n blocks. A k-regular fractal set � is a set obtained
as limit of such a sequence �n. Figure 1 illustrate a set �3 when d = 2
and k=3. The set � obtained in this case, if we always remove the middle
n-element from blocks of �n−1, is known as Sierpinski carpet.
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Fig. 1. Constructing Sierpinski carpet.

Proposition 19. The Hausdorff dimension of a k-regular fractal set
� is log(kd −1)/ log k.

Proof. Consider the function ρ assigning to each square covering
V ={V1, . . . , Vn}

ρ(V)=
n∑

j=1

diam(Vj )logk(k
d−1).

If we consider Vn the square covering of � whose elements are the blocks
of �n it is easy to verify that ρ(Vn)= 1 for all n. This implies that the
Hausdorff dimension of � is at most log(kd −1)/ log k. On the other hand,
we claim that any square covering U satisfies ρ(U) � 1. By Lemma 18
this claim implies that the Hausdorff dimension of � is at least log(kd −
1)/ log k, so the lemma is proved except by the claim. So let us prove it.

To prove the claim we show that any square covering can be obtained
by successive refinements of a square covering composed only by 1-ele-
ments, and that during the process of refinement ρ does not decrease.

Given a square covering U = {U1, . . . ,Ul} we don’t lose generality
assuming that all its elements intersect �. We claim that this assumption
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implies ρ(U)= 1. Consider the covering U1 composed by the 1-elements
that contain some Ui ∈ U . Starting from U1 we construct by induction a
sequence Un of square coverings according to the following rule: Un is the
square covering composed by all the elements of Un−1 that coincides with
some Ui ∈U and all the n-elements that contain some Ui ∈U . There exists
N such that Un = U for all n�N . Next two assertions are direct conse-
quences of the definition of Un:

• Each Un cover all the blocks of �n;

• Each n-element of Un is a block of �n.

They clearly imply that ρ(U1) = 1, and we use them to show that
ρ(Un)=ρ(Un+1). Notice that if Ui is an n-element of Un than either it is
an element of Un+1 or it will be replaced by the (kd − 1) blocks of �n+1
contained in Ui . Since

(kd −1)
( 1
kn+1

)logk(k
d−1) = (kd −1)(kd −1)−(n+1)= (kd −1)−n

=
( 1
kn

)logk(k
d−1)

it follows that in any case ρ(Un+1)=ρ(Un), what proves our claim.

4.4. Comparing the Repeller with Regular Fractals

Now that we already know the Hausdorff dimension of k-regular
fractals, we shall use this information to estimate by comparison the Haus-
dorff dimension of our repeller. Recall that we want to show that given
α<d, the Hausdorff dimension of � will be greater than α provided that
the Lebesgue measure of the hole is small enough. So let us consider an
α <d fixed. First step is to chose the k-regular set adequate to the com-
parison, that is, the correct k, depending on α. So now we fix k such that

α<
log(kd −1)

log k
. (10)

Moreover let us fix an expansion constant σ satisfying

e−σ <1/dk2d+1. (11)
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Once fixed σ we choose N to assure that the FN is σ -expanding (it is
enough to consider N such that e−cN <e−σ ). From now on we consider all
these constants fixed and when we refer to a cylinder or the repeller it is
always with respect to FN . We also use H to mean HFN and � instead of
�FN . Notice that the image domains Wi remain the same. We shall con-
sider without loss of generality that ρ, the maximum inner diameter of Wi ,
is equal to 1 and we recall that D= inf{Leb(Wi) : i = 1, . . . ,m}. Now we
have a simple technical lemma useful while dealing with square coverings
to �.

Lemma 20. Consider a k-square covering P = {P �1
1 , . . . , P

�m
m } to �

where P �i is an element on level �i . Suppose �i �L for all i. So P cover
�l for all l�L.

Proof. The diameters of the cylinders in �L are at most e−σ l (FN

is σ -expanding and ρ= 1), and the elements not covered by P are cubes
whose sides are at minimum 1/kL. So considering that 1/k� e−σ it fol-
lows that if there is a point of �L not covered it must exist a point in
the boundary of L-cylinder not covered, so P is not a covering of � (due
to the Markovian property the boundary of �L is contained in �). The
result follows if we notice that �l ⊂�L for all l�L.

Proposition 21. Consider the constants fixed above. If

Leb(H)
D

<
1
C2

(
1− kd −1

kd

)
, (12)

where C2 is the distortion constant to FN (according to Section 2.2), then
the Hausdorff dimension of � is bigger or equal than log(kd−1)

log k

Proof. We show that given any k-square covering of � such that the
levels of its elements are big enough we can use such covering to cover �,
a k-regular fractal set, rearranging the elements of the covering. Let U be
a square covering of �, and consider that its elements U1,U2, . . . ,Un have
levels �1 ��2 � · · ·��n. We use Xj to represent M\(∪i�jUi). We will con-
struct a covering U ′ = {U ′

1, . . . ,U
′
n} to � where the level of U ′

i is �i for all
i�n (Ui and U ′

i have the same level). We use X′
j to represent �\(∪i�jU ′

i ),
analogously to Xj . The strategy is the following: notice that the volume of
��1 is bigger than the volume of ��1 , use U ′

1 to cover some part of ��1

and then observe again that if it remains something to be covered in �,
the volume not covered in ��2 is smaller than Leb(R1 ∩��2), the volume
not covered by U1 in ��2 . We repeat this procedure until � be completely
covered.
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The volume of ��1 is ((kd − 1)/kd)�1 while the volume of ��1 is
at least Leb(�1)(1 − C2Leb(H)/D)�1 (by Corollary 9), so, if �1 is large
enough, (12) implies that

Leb(��1)<Leb(��1).

Take U ′
1, an �1-element, to cover any block of ��1 . Since

Leb(U ′
1)=Leb(��1 ∩U ′

1)�Leb(��1 ∩U1)

it follows that

Leb(��1 ∩R′
1)�Leb(��1 ∩R1).

Suppose, as induction hypothesis, that for 1 � j � n we have chosen sets
U ′

1, . . . ,U
′
j to cover � such that each U ′

i is an �i-element and

Leb(��j ∩X′
j )�Leb(��j ∩Xj). (13)

If j =n the right hand side of last inequality is zero, and so the left too.
In this case the proof is complete. Also if there are no more blocks to be
covered in ��j , we have already covered �. Let us consider that j �=n and
we still have some uncovered blocks in ��j and show that in this case we
also have (13) with j replaced by j +1. We claim that:

Leb(��j ∩X′
j )�Leb(��j ∩Xj).

implies

Leb(��j+1 ∩X′
j )�Leb(��j+1 ∩Xj). (14)

(That is, (13)⇒ (14).)
Let us finish the proof of the proposition assuming the claim. Chose

a non-covered �j+1 block in ��j+1 and consider U ′
�j+1

as the respective ele-
ment in the square partition of order �j+1 . Once again we have

Leb(U ′
j+1)=Leb(��j+1 ∩U ′

j+1)�Leb(��j+1 ∩Uj+1)

what, since we assumed (14), implies

Leb(��j+1 ∩X′
j+1)�Leb(��j+1 ∩Xj+1) (15)



504 Dysman

completing the proof (since we have shown that the induction step can be
performed), except by the claim.

To show the claim we first notice that if �j =�j+1, (14) is automatic,
so we only have to consider the case �j+1 >�j . If ��j is not completely
covered, it remains uncovered at least one element of the k-square parti-
tion of order �j , so

Leb(Xj ∩��j )�Leb(X′
j ∩��j )�1/kd�j .

We have to remove some pre-images of H from ��j to find ��j+1 , but we
want to do it in such a way that we keep the control over Leb(Xj ∩��j+1).
We can use bounded distortion arguments only to those cylinders that are
contained in Xj . We use the condition on exponential decays of diame-
ters of cylinders to ensure that the �j -cylinders intersecting the boundary
of elements on the k-square partition of level �j are not representative in
this context. The volume of �j -cylinders that intersect the boundary of the
square partition of order �j is at most d(ke−σ )�j . Considering the assump-
tion

e−σ <
1

dk2d+1

we have that

d(ke−σ )�j � 1

d�j k2d�j
� 1

d�j kd�j
Leb(Xj ∩��j )

It follows that the volume of the cylinders in ��j that are not con-
tained in Xj is bounded by a small fraction of ��j ∩Xj and the remaining
part, strictly contained in Xj , has volume bigger or equal than

Leb(Xj ∩��j )−d(ke−σ )�j � d�j−1kd�j −1

d�j−1kd�j
Leb(Xj ∩��j )

Now we have that

Leb(Xj ∩��j+1)�
d�j−1kd�j −1

d�j−1kd�j
Leb(Xj ∩��j )

(
1−C2

Leb(H)
D

)

while

Leb(X′
j ∩��j+1)=Leb(X′

j ∩��j )
kd −1
kd
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If �j is big enough we have (by hypothesis)

d�j−1kd�j −1

kd�j

(
1−C2

Leb(H)
D

)
� d�j−1kd −1

kd

what implies the inequality (14):

Leb(Xj ∩��j+1)�Leb(X′
j ∩��j+1).

Now we prove the Theorem 3.

Proof of Theorem 3. Notice that the repeller �F is the same repel-
ler � we had for FN . Then HD(�F )=HD(�). We recall that N may be
taken as the smaller natural number such that e−cN >e−σ . It is important
to notice that N is a number that depends only on k, d and c.

We have to be careful because HF is not the same H from last prop-
osition. However, bounded distortion (more precisely, Corollary 9) ensures
that

1−Leb(H)�
(

1−C2
Leb(HF )

D

)N
,

that is,

Leb(H)�1−
(

1−C2
Leb(HF )

D

)N
.

By Proposition 21, to ensure that HD(�)< log(kd−1)
k

it is enough to have

1−
(

1−C2
Leb(HF )

D

)N
<
D

C2

(
1− kd −1

kd

)
.

Define the function κ(x) as the infimum over all k that realize the inequal-
ity

1−
(

1−C2
x

D

)N
<
D

C2

(
1− kd −1

kd

)
.

or κ(x)=1 if there is not such k. It is clear that κ(x) goes to infinity when
x goes to zero. Now we just have to define

ψ1(x)= log(κ(x)d −1)
log κ(x)

(ψ1(x)=0 if κ(x)=1), and the proof is finished.
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5. CONTINUITY OF THE LIMIT CAPACITY

In this section we prove Theorem 2. Later, in Section 6, we will show
how to extend this statement to the more general case of non-uniformly
expanding maps with hole.

By the well-known inequality HD(X)�Cap(X) this theorem is a cor-
ollary from Theorem 3. On the other hand, as we shall see, the limit
capacity is not so dependent on volume distribution as Hausdorff dimen-
sion. Some of the efforts involved in bypassing non-conformality when
dealing with Hausdorff dimension, turn out not to be necessary for limit
capacity. This is substantiated by the the fact that in the later context the
proof is much shorter (about one page). The development of this shorter
proof is based on volume control through the steps of construction of the
repeller.

Proof of Theorem 2. It follows from the c-expanding assumption
that the volume of cylinders have exponential decay:

Leb(Cn)� e−nc

for all n-cylinder Cn.
On the other hand, considering the distortion constant C2 obtained

in Section 2.2, we have the following recurrence relation

Leb(�n)�Leb(�n−1)

(
1−C2

Leb(HF )
D

)

which implies that

Leb(�n)�
(1−Leb(HF ))

(1−C2
Leb(HF )

D
)

(
1−C2

Leb(HF )
D

)n
.

For k large enough we can fix a natural number q such that

kd+1>ecq >kd. (16)

Given a cylinder Cnq that intersects an element of the k-square partition
of order n, we claim that there is a point of the boundary of Cnq inside
the n-element. Indeed the volume of the n-element is bigger than the vol-
ume of any cylinder Cnq , what proves our claim. If Nn is the number of
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elements of the k-square partition of order n intersecting �nq we have that

Nn � (1−Leb(HF ))

(1−C2
Leb(HF )

D
)

(
1−C2

Leb(HF )
D

)nq
knd

= γ

[(
1−C2

Leb(HF )
D

)q
kd

]n
, (17)

where γ does not depend on n. As we saw, in each of these Nn elements,
there must be a point of the boundary of �nq (thus a point of �F ). It
is easy to see that among these Nn points of �F we can chose Nn

3d
points

such that the distance between any two of them is bigger or equal to k−n.
Consequently, any covering of �F by k−n-balls has at least Nn

3d
elements.

It follows that

Cap(�F )�− lim sup
n→∞

log(Nn/3d)
log k−n .

Considering (17),

Cap(�F )�
log[(1−C2

Leb(HF )
D

)qkd ]

log k
=d+q log(1−C2

Leb(HF )
D

)

log k
.

Now it is clear that if Leb(HF ) tends to zero, Cap(�F ) tends to d.
Moreover, considering (16), the function

ψ0(x)=max
{
d+ d+1

c
log

(
1−C2

x

D

)
,0

}

satisfies the statement of the theorem.

6. FROM NON-UNIFORM TO UNIFORM EXPANSION

This section aims to provide results that allow us to extend the theo-
rems from last sections to the case of non-uniformly expanding maps. This
is done through Theorem 4. The goal is to use a map f satisfying (NU1)

such that log |det(Df (−1))| is (C0, ε)-Hölder for any inverse branch f (−1)

of f to construct an induced map F c-expanding such that Leb(HF ) is so
small as we wish, provided that so does Leb(Hf ). Furthermore F shall be
such that log |det(DF (−1))| is (C′

0, ε)-Hölder for any inverse branch F (−1)

of F and the constants C′
0 shall depend only on C0, ε and c.
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Proof of Theorem 4. Let us consider the map Fn such that for all
j �n, Fn(x)=f j (x) if x∈Bj−1\Bj . In the set Bn we do not define Fn, we
consider this set as part of HFn . Therefore we have

HFn =Bn∪ (f−1(Hf )∩B1)∪· · ·∪ (f−(n−1)(Hf )∩Bn−1).

Defining T =max{1, Sd}, , we claim that

Leb(HFn)� δn+Leb(Hf )
n∑

j=0

mjT j

Indeed Leb(Bn)� δn and Leb(f−j (Hf )∩ Bj ) is bounded by the amount
of cylinders in Bj times the maximum Lebesgue measure of f−j (Hf )
for each inverse branch. The amount of cylinders is bounded by mj and
Leb(f−j (Hf ))�T jLeb(Hf ).

Consider the function ψ : [0,1]→R defined by

ψ(x)= inf
n∈N



δn+x
n∑

j=1

mjT j





We noticed that the infimum is attained for some n (the expression is
increasing after some n). Given f we will consider as F the map Fn such
that n is the natural that realizes the infimum ψ(Leb(Hf )). We define
ψ2(x)=min{1,ψ(x)}. It is clear that the map F and the function ψ2 so
defined satisfy the assertion of the theorem.
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